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1. INTRODUCTION

In this paper I consider a set-valued mapping and give a sufficient con
dition in order that almost lower semicontinuity of this mapping be
equivalent to the existence of a continuous selection. In Section 3, I prove
that the metric projection onto a finite-dimensional subspace in C( T), T
compact, has this property and, thus, a question of Deutsch and Kenderov
[5, 6J is answered.

This is probably the first step toward an intrinsic characterization of
those finite-dimensional subspaces of C(T) for which the metric projection
admits a continuous selection. Special results were earlier obtained by
Lazar, Morris and Wulbert [7J, who characterized one-dimensional sub
spaces, and Nurnberger and Sommer (see [10J), who gave a charac
terization in the case T = [a, b].

It turns out that most of the essential ideas I use were implicit in a paper
of Blatter and Schumaker [2J, who proved some uniqueness results for
continuous selections. However, it can be easily seen that a weaker con
dition than continuity of the selection was actually used in their proofs.

2. THE SET OF CONTINUOUS SELECTIONS

Let X be a topological space, Y a metric space with metric d, 2 Y the
collection of all non-empty subsets of Y. Let F: X --+ 2 Y a mapping whose
images are non-empty subsets of Y. A selection S for F is a map
ping S: X --+ Y such that S(x) E F(x) for each x E X.

We define the set of continuous selections for F by setting

F(x) := {S(x) IS is a continuous selection for F},
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It is obvious that
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PROPOSITION 2.1. There exists a continuous selection for F iff F(x) i= 0
for each x E X.

The question of whether or not F admits a continuous selection is now
equivalent to whether or not these sets F(x), x E X, are non-empty.

To obtain a result I recall a definition of Brown [1]. For y E Y and
A E 2 Y, the distance from y to A is denoted by

d( y, A) := inf{d( y, a) Ia E A }

and then

P(x) := {y E F(x)1 d(y, F(z)) ~ 0 as z ~ x}.

PROPOSITION 2.2. Assume P(x) c F(x) for each x E X. Then F admits a
continuous selection iff P(x) i= 0 for each x E X.

Proof Obviously we have for each x EX, F(x) c P(x), hence
F( x) = F' (x) for each x E X. By Proposition 2.1, F admits a continuous
selection iff P (x) i= 0 for each x E X.

The e-neighborhood of a non-empty set A c Y is given by

B,(A):= rYE Yld(y, A)<e}.

Deutsch and Kenderov gave the following definition [5].

DEFINITION 2.3. F is called almost lower semicontinuous (alsc) (resp. n
lower semicontinuous (n-lsc)) at X o E X iff for each e > 0 there exists a
neighborhood U of X o such that

n BAF(x)) i= 0
XEU

(resp. n7~ 1 Be(F(x J) i= 0 for each choice of n points Xl' ... ' X n in U). F is
called almost lower semicontinuous (alsc) (resp. n-lower semicontinuous
(n-lsc)) iff F is alsc (resp. n-lsc) at each point of X.

For a compact-valued mapping this definition was characterized by
Deutsch, Indumathi and Schnatz [4].

LEMMA 2.4. Let x E X and assume that F(x) is compact. Then F is alsc at
x iff P(x) i= 0.

We get easily
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PROPOSITION 2.5. Assume F(x) is compact and P(x) c F(x) for each
x E X. Then F admits a continuous selection iff F is alsc.

The question is now, which compact-valued mappings have the property
that P(x) c F(x) for each x EX? Unfortunately not every compact-valued
mapping has this property, as a counterexample of Pelant shows (see [5J).

The following three theorems concerning almost lower semicontinuity
were proved by Deutsch and Kenderov [5 J.

THEOREM 2.6. Let X be a paracompact space and let Y be a normed
linear space. Let F: X ~ 2 Y have convex images. Then F is alsc iff for each
E > 0, F has a continuous E-approximate selection (i.e., a continuous mapping
s: X ~ Y such that S(x) E B£(F(x)) for each x EX).

Using a theorem of Helly, they proved:

THEOREM 2.7. Let Y be an n-dimensional normed linear space, and sup
pose the mapping F: X ~ 2 Y has closed, bounded, and convex images. Then F
is (n + 1)-lsc iff F is alsc.

And they characterized, for one-dimensional spaces, when a continuous
selection exists.

THEOREM 2.8. Let X be a paracompact space, Ya one-dimensional nor
med linear space and suppose the mapping F: X ~ 2 Y has closed, bounded,
and convex images. Then F has a continuous selection iff F is 2-lsc.

3. THE METRIC PROJECTION IN C(T)

In this section we consider the space C( T) of all continuous, real-valued
functions on a compact Hausdorff space T, endowed with the usual
uniform norm. For an n-dimensional subspace Gin C(T) we call

P(f):= {gEGlllf-gll =d(j, G)}, fE C(T),

the set of all best approximations from f to G, where d(j, G) is called the
distance from f to G. It is well known that the metric projection
P: C(T) ~ 2G mapsfE C(T) into a non-empty, convex, and compact subset
of G.

The next definition is that of the lower semicontinuous kernel given by
Blatter and Schumaker [2]. I call it here, briefly, the kernel, but the
definition is exactly the same. Note that it is independent of continuity of
the given selection.
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DEFINITION 3.1. Assume S* is a selection for P. We define the kernel
p* of P induced by S* as follows: Fix fE C(T). Set H o:= P(f) and for
k= 1, 2, ...,

H k := {g E Hk-11 g coincides with S*(f) in some

neighborhood of E(f- H k - I)},

where E(f-Hk_d:= ngEHk_1 {tE Tllf(t)-g(t)1 =d(j, G)}. It is easily
verified that

for each k= 1,2,..., there exists a neighborhood of E(f-Hk-d
in which all elements of H k coincide with S*(f),
the sets H k are all closed, convex, and P(f) = H o~ HI ~
H2~ ... ~ {S*(f)}, and
for each k = 1, 2, ..., if H k is a proper subset of H k _ 1, then
dim(Hk ) < dim(Hk _ I)·

It then follows that the sequence H o, HI, H 2 , ••• , is stationary from some
point on. Let k?; 1 be the smallest integer for which H k = H k _ 1 and set
P*(f) := H k_ l ·

DEFINITION 3.2. A selection S* for P has property (*) iff for each
fEC(T), S*(f)EP'(f) (i.e., d(S*(f), P(h))--+O as h--+f).

Note that P has a selection with property (*) iff P'(f) i= 0 for all
fE C( T), hence by Lemma 2.4 iff P is alsc. Note moreover, that every con
tinuous selection has property (*) but the converse is not true, though I
will prove later that property (*) implies the existence of a continuous
selection.

In the subspace of polynomial m-splines with k simple knots in C[a, b],
Blatter and Schumaker [3] proved that there exists a unique maximal
alternator iff k ~ m and using a characterization result of Nurnberger and
Sommer [9] they showed, among other results, that the selection con
sisting of this unique maximal alternator has property (*) and is in general
not continuous.

LEMMA 3.3. Let S* be a selection for P with property (*) and let P* be
the kernel of P induced by S*. Then for every f E C( T) and every E > 0 there
exists an f, E C( T) such that Ilf, - fll < E and P(f,) c P*(f).

Proof Blatter and Schumaker proved this in [2, Lemma 3] under the
stronger asumption of a continuous selection. However, they only used
property (*) in their proof.

THEOREM 3.4. Let S* be a selection for P with property (*) and let p*
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he the kernel of P induced by S*. Then the kernel mapping P*: C( T) ---> 2ei is
lower semicontinuous.

Proof The proof is a slight modification of the corresponding proof in
the main theorem of [2]. We just have to replace (S*Un)) by a sequence
(gn) converging to S*(f) such that gn E pUn), n EN, which exists since S*
has property (*).

THEOREM 3.5. Let S* be a selection for P with property (*) and let p*
be the kernel of P induced by S*. Then P(f) = P'(f) = P*(f) for each
fE C(T).

Proof The inclusion P(f) c P'(f) is obvious, P'(f) c P*(f) is an easy
consequence of Lemma 3.3 and the definition of P'(f). By Theorem 3.4 the
kernel mapping is lower semicontinuous, hence with the selection theorem
of Michael [8J, P* resp. P has a continuous selection. In this case it is well
known that P is the largest lower semicontinuous submap of P (see [4 J),
this implies P*(f) c P(f),fE C(T).

It would be of interest to give a direct proof of P'(f) c P(f), fE C(T),
without using the definition of the kernel.

Now, the last theorem proves a conjecture of Deutsch and Kenderov [6J
in the special case of C( T), T compact.

COROLLARY 3.6. The metric projection P in C( T) onto an n-dimensional
subspace admits a continuous selection iff P is (n + 1)-lsc.

Proof If P is (n + 1)-lsc, then by Theorem 2.7, Pis alsc. Hence P has a
selection with property (*), by Lemma 2.4. We apply Theorem 3.5 and
Proposition 2.5 to obtain a continuous selection for P. The converse is
trivial.
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